فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


نویسندگان: 

HERLOCKER J.L. | KONSTAN J.A. | TERVEEN L.G.

اطلاعات دوره: 
  • سال: 

    2004
  • دوره: 

    22
  • شماره: 

    1
  • صفحات: 

    5-53
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    195
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 195

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

KUNAVER M.

نشریه: 

KNOWLEDGE-BASED systems

اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    123
  • شماره: 

    -
  • صفحات: 

    154-162
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    117
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 117

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نشریه: 

آرمان پردازش

اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    5
  • شماره: 

    1
  • صفحات: 

    43-52
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    67
  • دانلود: 

    0
چکیده: 

اخیرا سامانه های توصیه گر به عنوان یک فناوری جدید و بنیادین جهت حمایت کاربران در انتخاب منابع مناسب، بیش از پیش گسترش یافته اند. این سیستم ها با بررسی تعاملات گذشته کاربران و شناسایی علائق، یک محیط شخصی سازی شده جهت انتخاب منابع موردنظر را فراهم می نمایند. البته مدلسازی رفتار کاربر و مکانیسم ارائه توصیه از مسائل اساسی و تعیین کننده در کارائی سیستم های توصیه گر می باشند. درحوزه تجارت الکترونیک بهره گیری از سامانه های توصیه گر نقش اساسی در بهبود تجربه کاربر، جذب مشتریان بالقوه، افزایش فروش و بهینه سازی کارائی سیستم های خدماتی مرتبط دارند. لذا با توجه به اهمیت این سیستم ها در کسب و کارهای الکترونیک امروزی، شناخت ابعاد عملکردی سامانه های توصیه گر از اهمیت ویژه ای برخوردار می باشد. در این مقاله قصد داریم ابعاد اساسی سامانه های توصیه گر در حوزه تجارت الکترونیک را بررسی نموده و برخی ابزارهای کاربردی در این زمینه را معرفی نمائیم. قطعا با حرکت به سوی سامانه های تجارت الکترونیک مبتنی بر سیستم های توصیه گر هوشمند، شاهد تحولات عظیم و انقلابی دگرگون کننده در زیرساخت اقتصاد دیجیتال و خدمات مرتبط خواهیم بود.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 67

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    7
تعامل: 
  • بازدید: 

    211
  • دانلود: 

    0
چکیده: 

Blockchain has recently raised significant attention among many scientists as a promising technology in the field of distributed systems. The main properties of blockchain that make it popular are decentralization, transparency, and immutability. The novelty of blockchain technology poses many challenges in this area. One of these challenges is managing data in blockchain and providing data that is appropriate to the user's interests. This challenge in current centralized systems is addressed through Recommender systems. Implementing Recommender systems within smart contracts increases transaction costs and inaccurate recommendations due to the lack of complex computational capabilities of machine learning algorithms in smart contract programming languages. This paper proposes a method to improve data-based blockchain recommendation systems. In this method, data is stored in a blockchain structure that is defined in smart contract. This data is then provided to Recommender system out of blockchain through the public key of the smart contract to be processed for providing the appropriate recommendations to the user. The results are then stored in blockchain through a transaction to be presented to the user. The results of the present study and comparison with previous works show that performing complex off-chain calculations reduces the transaction cost in terms of Gas consumption for the smart contract deployment as well as the execution of recommendation function defined in smart contract. In consequence, we can achieve more scalability in blockchain-based Recommender systems.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 211

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسنده: 

BODAGHI ALI | Homayounvala Elaheh

اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    4
تعامل: 
  • بازدید: 

    152
  • دانلود: 

    0
چکیده: 

INTERACTIVE Recommender systems INVOLVE USERS IN THE PROCESS OF RECOMMENDATIONS. USERS WITH DIFFERENT SKILL LEVELS HAVE VARIOUS PREFERENCES IN THEIR TYPE OF INTERACTIONS WITH INTERACTIVE Recommender systems. ADAPTING USERS’ TYPE OF INTERACTIONS WITH Recommender systems ACCORDING TO THEIR EXPERIENCE LEVELS SEEMS TO BE A PROMISING IMPROVEMENT TO ENHANCE RECOMMENDATION PROCESS AND USER SATISFACTION WITH INTERACTIVE Recommender systems. IN THIS PAPER, EXPERT USERS ARE AUTOMATICALLY RECOGNIZED BASED ON THEIR INTERACTION WITH AN INTERACTIVE Recommender SYSTEM. SHOPR SOFTWARE, AN INTERACTIVE Recommender APPLICATION FOR SMARTPHONES, IS USED TO TRACK USERS’ INTERACTIONS. USERS ARE GROUPED IN TWO CATEGORIES OF EXPERT AND NOVICE USERS BASED ON THEIR INTERACTIONS WITH SHOPR SOFTWARE IN OUR USER STUDY. TASK COMPLETION TIME IS USED TO RECOGNIZE USERS’ SKILL LEVEL. THE RESULT OF THE STUDY SHOW THAT ALL USERS RECOGNIZED AS EXPERT USERS ARE INDEED EXPERT BUT SOME EXPERT USERS WHO SPENT MORE TIME IN THE Recommender SYSTEM TO IMPROVE THEIR CHOICE OF SHOPPING CANNOT BE DETECTED BY THIS ALGORITHM. THE RESULT OF THIS RESEARCH CAN BE USED TO OFFER PERSONALIZED INTERACTION FOR EXPERT USERS IN INTERACTIVE Recommender systems.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 152

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
عنوان: 
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

  • شماره: 

  • صفحات: 

    -
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    27
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 27

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسنده: 

Farahi Zahra | MOEINI ALI | KAMANDI ALI

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    5
تعامل: 
  • بازدید: 

    153
  • دانلود: 

    0
چکیده: 

IN THIS PAPER, WE PROPOSE NEW ALGORITHMS TO IMPROVE THE PERFORMANCE OF Recommender systems, BASED ON HIERARCHICAL BLOOM FILTERS. SINCE BLOOM FILTERS CAN MAKE A TRADEOFF BETWEEN SPACE AND TIME, PROPOSING A NEW HIERARCHICAL BLOOM FILTER CAUSES A REMARKABLE REDUCTION IN SPACE AND TIME COMPLEXITY OF Recommender systems. SPACE REDUCTION IS DUE TO HASHING ITEMS IN A BLOOM FILTER TO MANAGE THE SPARSITY OF INPUT VECTORS. TIME REDUCTION IS DUE TO THE STRUCTURE OF HIERARCHICAL BLOOM FILTER. TO INCREASE THE ACCURACY OF THE Recommender systems WE USE PROBABILISTIC VERSION OF HIERARCHICAL BLOOM FILTER. THE STRUCTURE OF HIERARCHICAL BLOOM FILTER IS B+ TREE OF ORDER D. PROPOSED ALGORITHMS NOT ONLY DECREASE THE TIME COMPLEXITY BUT ALSO HAVE NO SIGNIFICANT EFFECT ON ACCURACY.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 153

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    2
  • شماره: 

    1
  • صفحات: 

    51-64
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    176
  • دانلود: 

    0
چکیده: 

Nowadays, we deal with a large volume of information that we may have wrong choices without appropriate guidance. To this end, Recommender systems are proposed which are a type of information filtering system that acts as a filter and displays information that is useful and close to the user's interests. They reduce the volume of the retrieved information and help users to select relevant products from millions of choices available on the internet. However, since these systems use explicitly and implicitly collected information about the user's interests for different items to predict the user's favorite items, the adversaries due to their openness nature might attack them. Therefore, identifying them is essential to improve the quality of the recommendations. For this purpose, in this paper, a method based on two criteria of a maximum number of users with the equal length and the degree of novelty of their profiles is presented and finally, the DBSCAN clustering algorithm is used to distinguish genuine users from fake users. In order to improve the DBSCAN algorithm, we proposed a new method to determine the values of Eps and MinPts automatically. The results of the proposed method are compared with a new comparative study on shilling detection methods for trustworthy recommendations, which shows that the proposed method independent of the type of attack can identify fake users in most cases with accuracy close to 1.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 176

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    16
  • شماره: 

    1
  • صفحات: 

    10-19
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    137
  • دانلود: 

    0
چکیده: 

Trust-based Recommender systems use trust relationships between users to improve the quality of recommendations. One of the most important features of trust is context-dependency. Despite the importance of context-dependency, this feature has been largely neglected in the current literature. In this paper, we propose a new approach that considers the semantic context of items to infer trust relationships between users. In this approach, the level of trust between two users varies depending on different contexts. Therefore, the trustworthy neighbors of an active user will be different for different target items, and these neighbors are determined according to the target context. The focus on context-specific ratings instead of all ratings results in fewer online computations, thus increasing the efficiency of the system as well as the accuracy of recommendations. Experimental results on a real-world data set show the higher accuracy and efficiency of the proposed approach compared to its counterparts.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 137

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Nourahmadi Marziyeh

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

  • شماره: 

  • صفحات: 

    93-116
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    0
  • دانلود: 

    0
چکیده: 

As science and technology advance rapidly, vast amounts of structured, semi-structured, and unstructured data are generated daily from various sources. This data, produced by diverse users, often exhibits common patterns that can be filtered and analyzed to offer valuable recommendations for products or services that interest these users. Recommender systems emerged in the mid-1990s and gained significant attention following the Netflix Prize. Today, these systems are applied in diverse fields, such as movie recommendations (Netflix), book suggestions (Amazon), and music selections (Spotify). Recommender systems (RS) are software applications and methods created to suggest items that may be valuable or relevant to users. This study aims to identify, evaluate, and synthesize research on the application of Recommender systems in finance. To achieve this objective, we employed the bibliometric method, a robust approach for collecting research data. All relevant articles in this field were initially gathered from the Scopus database. Subsequently, we conducted an analysis using the bibliometrix package in R software to process the collected articles. In this study, we review the historical background of research conducted on Recommender systems, explore their applications in the financial domain, and elaborate on the inputs and outputs of such systems. Additionally, we introduce different Recommender systems and discuss their advantages, disadvantages, and challenges. Finally, we offer suggestions for the implementation of this method. The findings of this research serve as a valuable toolkit to assist researchers in their work within this area of study.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 0

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button